1,314 research outputs found

    Convergence behavior that controls adaptive wind tunnel walls near the test section in the high angle of attack range

    Get PDF
    The NACA 0012 profile at Mach 0.5 was investigated in a wind tunnel with adaptive walls. It is found that adaptation of the flexible walls is possible in the high angle of attack range on both sides of maximum lift. Oil film photographs of the flow at the profile surface show three dimensional effects in the region of the corners between the profile and the sidewall. It is concluded that pure two dimensional separated flow is not possible

    Statistical Learning Theory for Control: A Finite Sample Perspective

    Full text link
    This tutorial survey provides an overview of recent non-asymptotic advances in statistical learning theory as relevant to control and system identification. While there has been substantial progress across all areas of control, the theory is most well-developed when it comes to linear system identification and learning for the linear quadratic regulator, which are the focus of this manuscript. From a theoretical perspective, much of the labor underlying these advances has been in adapting tools from modern high-dimensional statistics and learning theory. While highly relevant to control theorists interested in integrating tools from machine learning, the foundational material has not always been easily accessible. To remedy this, we provide a self-contained presentation of the relevant material, outlining all the key ideas and the technical machinery that underpin recent results. We also present a number of open problems and future directions.Comment: Survey Paper, Submitted to Control Systems Magazine. Second version contains additional motivation for finite sample statistics and more detailed comparison with classical literatur

    Priming theta burst stimulation enhances motor cortex plasticity in young but not old adults

    Get PDF
    Abstract not availableGeorge M. Opie, Eleni Vosnakis, Michael C. Ridding, Ulf Ziemann, John G. Semmle

    Structural and Electronic Properties of Small Neutral (MgO)n Clusters

    Get PDF
    Ab initio Perturbed Ion (PI) calculations are reported for neutral stoichiometric (MgO)n clusters (n<14). An extensive number of isomer structures was identified and studied. For the isomers of (MgO)n (n<8) clusters, a full geometrical relaxation was considered. Correlation corrections were included for all cluster sizes using the Coulomb-Hartree-Fock (CHF) model proposed by Clementi. The results obtained compare favorably to the experimental data and other previous theoretical studies. Inclusion of correlaiotn is crucial in order to achieve a good description of these systems. We find an important number of new isomers which allows us to interpret the experimental magic numbers without the assumption of structures based on (MgO)3 subunits. Finally, as an electronic property, the variations in the cluster ionization potential with the cluster size were studied and related to the structural isomer properties.Comment: 24 pages, LaTeX, 7 figures in GIF format. Accepted for publication in Phys. Rev.

    Emergence of Bulk CsCl Structure in (CsCl)nCs+ Cluster Ions

    Full text link
    The emergence of CsCl bulk structure in (CsCl)nCs+ cluster ions is investigated using a mixed quantum-mechanical/semiempirical theoretical approach. We find that rhombic dodecahedral fragments (with bulk CsCl symmetry) are more stable than rock-salt fragments after the completion of the fifth rhombic dodecahedral atomic shell. From this size (n=184) on, a new set of magic numbers should appear in the experimental mass spectra. We also propose another experimental test for this transition, which explicitely involves the electronic structure of the cluster. Finally, we perform more detailed calculations in the size range n=31--33, where recent experimental investigations have found indications of the presence of rhombic dodecahedral (CsCl)32Cs+ isomers in the cluster beams.Comment: LaTeX file. 6 pages and 4 pictures. Accepted for publication in Phys. Rev.

    One-Bead Microrheology with Rotating Particles

    Full text link
    We lay the theoretical basis for one-bead microrheology with rotating particles, i.e, a method where colloids are used to probe the mechanical properties of viscoelastic media. Based on a two-fluid model, we calculate the compliance and discuss it for two cases. We first assume that the elastic and fluid component exhibit both stick boundary conditions at the particle surface. Then, the compliance fulfills a generalized Stokes law with a complex shear modulus whose validity is only limited by inertial effects, in contrast to translational motion. Secondly, we find that the validity of the Stokes regime is reduced when the elastic network is not coupled to the particleComment: 7 pages, 5 figures, submitted to Europhys. Let

    Two-point microrheology and the electrostatic analogy

    Full text link
    The recent experiments of Crocker et al. suggest that microrheological measurements obtained from the correlated fluctuations of widely-separatedprobe particles determine the rheological properties of soft, complex materials more accurately than do the more traditional particle autocorrelations. This presents an interesting problem in viscoelastic dynamics. We develop an important, simplifing analogy between the present viscoelastic problem and classical electrostatics. Using this analogy and direct calculation we analyze both the one and two particle correlations in a viscoelastic medium in order to explain this observation

    Closed orbit correction at synchrotrons for symmetric and near-symmetric lattices

    Full text link
    This contribution compiles the benefits of lattice symmetry in the context of closed orbit correction. A symmetric arrangement of BPMs and correctors results in structured orbit response matrices of Circulant or block Circulant type. These forms of matrices provide favorable properties in terms of computational complexity, information compression and interpretation of mathematical vector spaces of BPMs and correctors. For broken symmetries, a nearest-Circulant approximation is introduced and the practical advantages of symmetry exploitation are demonstrated with the help of simulations and experiments in the context of FAIR synchrotrons

    Numerical Studies of a Confocal Resonator Pick-Up with FEMLAB

    Get PDF
    Diagnostic devices aimed at measuring beam profiles in high intensity accelerators are often perturbed by microwave fields generated by the beam itself upstream of the detection device, which propagate inside the vacuum pipe. These parasitic waveguide modes can significantly reduce the signal-to-noise ratio and thus the sensitivity of the beam monitor. This warrants investigation of detection devices that are sensitive to the direct electromagnetic fields of the beam, but largely ignore the parasitic waveguide modes. A new pick-up based on a confocal resonator configuration situated transversely to the direction of propagation of the beam is currently under development at Uppsala University, Sweden. Since a confocal resonator can have a high quality factor for the diffraction losses, then reciprocity suggests that it only couples weakly to external fields while keeping anyway a significant coupling to the direct fields of the beam. Numerical simulations were performed with FEMLAB to better characterize the electromagnetic properties of a confocal resonator pick-up to be operated in the multi-GHz range, especially in terms of eigen-frequencies and coupling to external electromagnetic fields. Our results were then compared to analytical predictions and a good agreement was found, despite a few limitations in the computation of the resonant modes. Having recently built a first confocal resonator prototype, we also performed experimental cross-checks of our numerical studies with a microwave network analyzer. Our results are presented in detail in this report and we discuss further applications of the confocal resonator microwave pick-up
    • …
    corecore